УДК 632

ФОРМЫ ГОРОХА С ИЗМЕНЕННОЙ АРХИТЕКТОНИКОЙ ЛИСТА В СЕЛЕКЦИИ НА УСТОЙЧИВОСТЬ К ФИТОПАТОГЕНАМ

Зеленов А.А.*, **Бударина Г.А.**, научные сотрудники ФГБНУ «Всероссийский НИИ зернобобовых и крупяных культур» ФАНО России

Новикова Н.Е., профессор ФГБОУ ВО «Орловский государственный аграрный университет»

*E-mail: zelenov-a-a@ya.ru

РИПРИМЕНТА

Современные сорта сельскохозяйственных культур, в том числе и гороха, как констатируют многие исследователи, в целом отличаются пониженной, по сравнению со стародавними, устойчивостью к биогенным стрессорам. Одна из главных причин этой тенденции заключается в том, что главным критерием их допуска к использованию в производство (районирования) является урожайность. Однако лимитируются предельные возможности растения его биоэнергетическим потенциалом. Проведённые во ВНИИЗБК исследования (Новикова Н.Е и др., 1989) показали, что за сто лет научной селекции урожайность семян у современных сортов гороха возросла в два-три раза, но общая продуктивность биомассы растения, а значит и его биоэнергетический потенциал, за этот период практически не изменился. Такая же закономерность наблюдается у пшеницы, ячменя, риса, кукурузы и других видов. Отмечено, что «выделывавшиеся примерно с 1830 г. сорта зерновых культур синтезировали почти столько же веществ, что и современные сорта» (Шмальц Х. 1978).

КЛЮЧЕВЫЕ СЛОВА

Сорт, селекция, гены, устойчивость, горох.

Консерватизм биопотенциала растения определяется его генотипом, представляющим «высокоинтегрированную систему, в которой основные адаптивные, включая и хозяйственно ценные, признаки контролируются блоками коадаптивных генов, весьма устойчивыми к мейотической рекомбинации» (Жученко А.А., 2004). Определяемая биопотенциалом современных сортов гороха, максимальная урожайность семян в условиях Центральной России может составлять 5,5-6,0 т/га при содержании белка в них 22-23% (Новикова Н.Е., 2002). Дальнейший прогресс в направлении увеличения как урожайного потенциала, так и стрессоустойчивости возможен путём увеличения общей биологической продуктивности растения.

Обобщая литературные данные о биоэнергетической «цене» формирования защитных морфоанатомических структур и биохимических реакций, А.А. Жученко (2009) отмечает, что затраты первичных ассимилянтов на их формирование достаточно велики. Так, например, на биосинтез одного грамма лигнина, защищающего клетчатку от микробного распада, а также танина расходуется 2,17 г глюкозы. В случае поражения растения вредителями или болезнями сокращается площадь листовой поверхности, резко возрастает активность дыхания в пораженных тканях, что увеличивает расход запасённой в клетках энергии.

Во ВНИИЗБК получены формы гороха с изменённой архитектоникой листа, которые благодаря высоким показателям процесса фотосинтеза формируют увеличенную биомассу. Это мофотипы: с ярусной гетерофиллией (хамелеон), строение листа у которого контролируется аллелями \underline{af} и \underline{unt}^{ac} ; рассечённолисточковый — \underline{af} \underline{tac}^{A} ; дважды непарноперистый без усиков (B — агримут) — \underline{af} \underline{tac}^{A} \underline{tl} . Заслуживает

внимания и известный уже более полувека многократно непарноперистый морфотип — $\underline{af\ tl}$ (Зеленов А.Н., 2011; Зеленов А.Н. и др., 2013; Зеленов А.Н. и др., 2014). Высокая интенсивность фотосинтеза у этих форм определяется одновременным функционированием двух или, соответственно, трех аллелей, которые не только формируют строение листа, но и участвуют в процессе фотосинтеза.

Работа с формой хамелеон продолжается уже четверть века. В результате был создан, передан на государственное испытание и в настоящее время допущен к использованию в шести регионах Российской Федерации (Центральный, Волго-Вятский, Центрально-Чернозёмный, Северо-Кавказский, Средневолжский и Уральский) сорт Спартак. Он отличается высокой урожайностью семян, - максимальная 62,3 ц/га, увеличенным содержанием белка в семенах (+1,5% к стандарту), и повышенной устойчивостью к наиболее вредоносным фитопатогенам (табл. 1,2).

Болезни	Conto	Годы испытания		
Болезни	Сорта	2003	2004	2005
Ackeyiator (CoCi I) 9/ propiating	Спартак	0,9	15,3	3,7
Аскохитоз (бобы), % развития	Орловчанин – ст.	4,4	40,0	7,0
MANUALTER DOOR STORING HONOVOLING	Спартак	20	16	40
Мучнистая роса, степень поражения	Орловчанин – ст.	60	48	80
Kanuan ia silasia 9/ naanasias	Спартак	8,0	9,7	0,0
Корневые гнили, % развития	Орловчанин – ст.	12,0	14,0	6,0

Таблица 1 - Поражение болезнями сорта Спартак, естественный фон

Таблица 2 - Поражение болезнями сорта Спартак, инфекционный фон

Болезни	Conto	Годы испытания		
Болезни	Сорта	2003	2004	2005
	Спартак	5,7	3,0	0,7
Аскохитоз (бобы), % развития	Орловчанин – ст.	7,0	3,2	0,9
	Таловец 50 – индик.	5,0	30	1,8
	Спартак	15,9	20,3	20,5
Корневые гнили, % развития	Орловчанин – ст.	25,0	30,5	30,0
	Таловец 50 – индик.	30,5	35,3	31,6

Во все годы испытания по своей фитопатологической характеристике гетерофилльный сорт Спартак как на естественном фоне, так и на инфекционном превосходил и стандартный сорт Орловчанин и сорта-индикаторы.

Линии рассечённолисточкового морфотипа, который был обнаружен как спонтанный мутант в безлисточковом сорте Батрак, при испытании на естественном фоне в 2013 г. вели себя разнонаправленно по отношению к исходному сорту (табл. 3). В среднем поражение корневыми гнилями, ржавчиной, аскохитозом и мучнистой росой у них было на уровне исходног сорта. Но только линия Рас-1098/8, полученная от скрещивания мутанта с сортом Опорный 1 из Ростовской области, показала более высокую устойчивость к корневым гнилям и в некоторой степени к мучнистой росе. Линия Рас-828/9 ((Рас-тип х Батрак) х Батрак), которая по существу является полуизогенной к исходному сорту, всеми болезнями поражалась практически в той же степени, что и Батрак.

Таблица 3 - Пораженность болезнями линий гороха рассечённолисточкового морфотипа на естественном фоне (% развития), 2013 г.

Сорт, линии	Корневые гнили	Ржавчина	Аскохитоз	Мучнистая роса
Батрак	31,7	48,1	50,3	38,7
Pac-665/7	35,7	54,2	56,7	46,0
Pac-678/7	22,9	56,5	24,7	35,0
Pac-1070/8	28,2	48,3	52,6	43,6
Pac-1098/8	25,0	46,0	42,4	23,4
Pac-828/9	31,0	50,0	21,9	41,2
Среднее [*]	28,6	51,0	51,7	37,8

Все многократно непарноперистые линии в условиях эпифитотии мучнистой росы в 2014 г. проявили устойчивость к этому патогену.

Фактором неспецифической устойчивости растений к стрессорам является ферментативная система, играющая первостепенную роль в поддержании внутриклеточного гомеостаза. В этой системе каталаза и пероксидаза являются компонентами комплексной защиты клетки от агрессивных форм кислорода, в частности от накопления перекиси водорода.

Перекиси являются продуктами нормального обмена веществ и образуются в ходе фотосинтеза, дыхания и других процессов окисления. Но в неблагоприятных для нормальной жизнедеятельности условиях пероксиды накапливаются в повышенных концентрациях и оказывают токсическое действие на клетку. Каталаза и пероксидаза разлагают эти соединения. При этом пероксидаза обладает высоким сродством к перекиси водорода, и использует её для окисления органических веществ клетки. Часть перекиси, не использованная пероксидазой, в дальнейшем разрушается каталазой.

Изучение активности каталазы и пероксидазы в листьях (усиках) и прилистниках линий рассечённолисточкового морфотипа показало, что активность каталазы в листьях (усиках) и прилистниках изученных рассечённолисточковых линий (кроме Рас-665/7) была выше, чем у сорта Батрак. По активности пероксидазы выделились линии Рас-1098/8 и Рас-828/9 (табл. 4).

Варианты	Каталаза, мкмоль H₂O₂/ г сырой массы/мин		Пероксидаза, изменение оптической плотности/ г сырой массы/мин		
	Листочки (усы)	Прилистники	Листочки (усы)	Прилистники	
Батрак	500±71	885±42	358±104	1089±228	
Pac-665/7	835±49	800±21	193±31	206±71	
Pac-678/7	832±81	902±81	230±14	203±71	
Pac-1070/8	727±81	915±35	297±29	191±45	
Pac-1098/8	1017±32	902±102	517±223	249±7	
Pac-828/9	632±60	1010±98	534±92	438±28	

Таблица 4 - Активность каталазы и пероксидазы, фаза цветения

Следовательно, можно утверждать, что высокая активность ферментов у линии Рас-1098/8 обуславливает её высокие иммунные свойства. Эта линия, несмотря на склонность к полеганию, оказалась в среднем за три года (2012-2015) наиболее урожайной среди других рассечённолисточковых линий — 31,6 ц/га (сорт Батрак — 30,6 ц/га).

Таким образом, лучшие линии гороха с измененной архитектоникой листа, обладая повышенным биоэнергетическим потенциалом, способны не только формировать высокий урожай семян, но и показывают повышенную устойчивость к фитопатогенам.

БИБЛИОГРАФИЯ

- 1. Жученко А.А. Ресурсный потенциал производства зерна в России. М.: «Агрорус», 2004. 1112 с.
- 2. Жученко А.А. Адаптивное растениеводство (эколого-генетические основы) теория и практика. Т.II. М.: «Агрорус», 2009 1098 с.
- 3. Зеленов А.Н. Потенциал гетерофилльной формы гороха и пути его реализации // Аграрная Россия. 2011. №3. с. 13-16.
- 4. Зеленов А.Н., Зотиков В.И., Наумкина Т.С. и др. Биологический потенциал и перспективы селекции рассечённолисточкового морфотипа гороха // Зернобобовые и крупяные культуры, 2013. №4 (8). С.3-11.

- 5. Зеленов А.Н., Наумкина Т.С., Щетинин В.Ю. и др. Достоинства и перспективы использования многократно непарноперистой формы гороха // Зернобобовые и крупяные культуры. 2014. №3 (11). с. 12-19
- 6. Новикова Н.Е. Физиологическое обоснование роли морфотипа растений в формировании урожайности сортов гороха. Автореф. дисс. доктора с.х. наук. Орёл, 2002. 46 с
- 7. Новикова Н.Е., Лаханов А.П., Амелин А.В. Физиологические изменения в растениях гороха в процессе длительной селекции на продуктивность // Доклады ВАСХНИЛ. 1989. №9. с.16-19
- 8. Шмальц X. Селекция растений. М.: «Колос», 1973. 296 с.